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D
ear Student,
We wrote this book with three overarching goals in mind: to make chem-
istry interesting, relevant, and memorable; to enable you to see the world 

from a molecular point of view; and to help you become an expert problem-solver. 
You have a number of resources available to assist you to succeed in your general 
chemistry course. This textbook will be a valuable resource, and we have written 
it with you, and the different ways you may use the book, in mind.

If you are someone who reads a chapter from the first page to the last, you will 
see that Chemistry: The Science in Context, Fifth Edition, introduces the chemical 
principles within a chapter by using contexts drawn from daily life as well as from 
other disciplines, including biology, environmental science, materials science, 
astronomy, geology, and medicine. We believe that these contexts make chemis-
try more interesting, relevant, understandable, and memorable.

Chemists’ unique perspective of natu-
ral processes and insights into the proper-
ties of substances, from high-performance 
alloys to the products of biotechnology, 
are based on understanding these pro-
cesses and substances at the particulate 
level (the atomic and molecular level). A 
major goal of this book is to help you 
develop this microscale perspective and 
link it to macroscopic properties.

With that in mind, we begin each 
chapter with a Particulate Review and 
Particulate Preview on the first page. 
The goal of these tools is to prepare you 
for the material in the chapter. The 
Review assesses important prior knowl-
edge you need to interpret particulate 
images in the chapter. The Particulate 
Preview asks you to speculate about new 
concepts you will see in the chapter and 
is meant to focus your reading.

preface

Breaking Bonds and Energy

When ozone molecules absorb ultraviolet rays (UV rays) from the Sun, the  
ozone falls apart into oxygen molecules and oxygen atoms according to the  
chemical reaction depicted here. As you read Chapter 5, look for ideas that  
will help you answer these questions:

 What role does energy play in breaking the bonds?

 Does bond breaking occur when energy is absorbed? Or does breaking  
a bond release energy?

PARTICUL ATE PREVIEW

O3(g)
UV rays

O2( g) + O(g)

Acid and Base

In Chapter 5 we consider the energy changes that occur  
during reactions such as the combustion reactions from  
Chapter 3 and neutralization reactions from Chapter 4.

 Here we see the key molecules and ions involved in  
the titration of hydrochloric acid with sodium hydroxide.  
Name each molecule or ion and write its formula.

 The colorless solution in the flask on the left is  
hydrochloric acid. The colorless solution in the buret  
is sodium hydroxide. On the right is a picture of the  
titration after all the acid has been neutralized. Which  
of the illustrated particles are present in the buret,  
the flask on the left, and the flask on the right? 

(Review Sections 4.5–4.6 if you need help.)
(Answers to Particulate Review questions are in the back of the book.)

PARTICUL ATE REVIEW

(a) (b)
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If you want a quick summary of what is most important in a chapter to direct 
your studying on selected topics, check the Learning Outcomes at the beginning 
of each chapter. Whether you are reading the chapter from first page to last, mov-
ing from topic to topic in an order you select, or reviewing material for an exam, 
the Learning Outcomes can help you focus on the key information you need to 
know and the skills you should acquire.

LO1    Explain kinetic and potential 
energies at the molecular level
Sample Exercise 5.1

LO2    Identify familiar endothermic and 
exothermic processes
Sample Exercise 5.2

LO3    Calculate changes in the internal 
energy of a system
Sample Exercises 5.3, 5.4

LO4    Calculate the amount of heat 
transferred in physical or chemical 
processes
Sample Exercises 5.5, 5.6, 5.7, 5.8, 5.9

LO5    Calculate thermochemical values by 
using data from calorimetry experiments
Sample Exercises 5.10, 5.11

LO6    Calculate enthalpies of reaction
Sample Exercises 5.12, 5.13, 5.15

LO7    Recognize and write equations for 
formation reactions
Sample Exercise 5.14

LO8    Calculate and compare fuel and 
food values and fuel densities
Sample Exercises 5.16, 5.17

Learning Outcomes

In every section, you will find key terms in boldface in the text and in a run-
ning glossary in the margin. We have inserted the definitions throughout the 
text, so you can continue reading without interruption but quickly find key terms 
when doing homework or reviewing for a test. All key terms are also defined in 
the Glossary in the back of the book.

Approximately once per section, you will find a Concept Test. These short, 
conceptual questions provide a self-check opportunity by asking you to stop and 
answer a question relating to what you just read. We designed them to help you 
see for yourself whether you have grasped a key concept and can apply it. You will 
find answers to Concept Tests in the back of the book.

CONCEPT TEST

Identify the following systems as isolated, closed, or open: (a) the water in a pond; 
-

ducting plastic wrap; (d) a live chicken.

(Answers to Concept Tests are in the back of the book.)

New concepts naturally build on previous information, and you will find that 
many concepts are related to others described earlier in the book. We point out 
these relationships with Connection icons in the margins. These reminders will 
help you see the big picture and draw your own connections between the major 
themes covered in the book.

At the end of each chapter is a group of Visual Problems that ask you to inter-
pret atomic and molecular views of elements and compounds, along with graphs 
of experimental data. The last Visual Problem in each chapter contains a visual 
problem matrix. This grid consists of nine images followed by a series of ques-
tions that will test your ability to identify the similarities and differences among 
the macroscopic and particulate images.

If you’re looking for additional help visualizing a concept, we have almost 100 
ChemTours, denoted by the ChemTour icon. The ChemTours, available at digital 
.wwnorton.com/chem5, provide animations of physical changes and chemical 
reactions to help you envision events at the molecular level. Many ChemTours are 
interactive, allowing you to manipulate variables and observe resulting changes in 

C NNECTION In Chapter 1 we 
discussed the arrangement of molecules  
in ice, water, and water vapor.

CHEMTOUR
Heating Curves

https://digital.wwnorton.com/chem5
https://digital.wwnorton.com/chem5
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a graph or a process. Questions at the end of the ChemTour tutorials offer step-by-
step assistance in solving problems and provide useful feedback.

Another goal of the book is to help you improve your problem-solving skills. 
Sometimes the hardest parts of solving a problem are knowing where to start and 
distinguishing between information that is relevant and information that is not. 
Once you are clear on where you are starting and where you are going, planning 
for and arriving at a solution become much easier.

To help you hone your problem-solving skills, we have developed a frame-
work that is introduced in Chapter 1 and used consistently throughout the book. 
It is a four-step approach we call COAST, which is our acronym for (1) Collect 
and Organize, (2) Analyze, (3) Solve, and (4) Think About It. We use these four 
steps in every Sample Exercise and in the solutions to odd-numbered problems in 
the Student’s Solutions Manual. They are also used in the hints and feedback 
embedded in the Smartwork5 online homework program. To summarize the 
four steps:

Collect and Organize helps you understand where to begin. 
In this step we often point out what you must find and what 
is given, including the relevant information that is provided in 
the problem statement or available elsewhere in the book.

Analyze is where we map out a strategy for solving the 
problem. As part of that strategy we often estimate what a rea-
sonable answer might be.

Solve applies our strategy from the second step to the infor-
mation and relationships identified in the first step to actually 
solve the problem. We walk you through each step in the solu-
tion so that you can follow the logic as well as the math.

Think About It reminds us that calculating or determining an 
answer is not the last step when solving a problem. Checking 
whether the solution is reasonable in light of an estimate is 
imperative. Is the answer realistic? Are the units correct? Is the 
number of significant figures appropriate? Does it make sense 
with our estimate from the Analyze step?

Many students use the Sample Exercises more than any 
other part of the book. Sample Exercises take the concept 
being discussed and illustrate how to apply it to solve a 
problem. We hope that repeated application of COAST will 
help you refine your problem-solving skills and become an expert problem-solver. 
When you finish a Sample Exercise, you’ll find a Practice Exercise to try on your 
own. Notice that the Sample Exercises and the Learning Objectives are connected. 
We think this will help you focus efficiently on the main ideas in the chapter.

Students sometimes comment that the questions on an exam are more chal-
lenging than the Sample Exercises in a book. To address this, we have an Inte-
grating Concepts Sample Exercise near the end of each chapter. These exercises 
require you to use more than one concept from the chapter and may expect you to 
use concepts from earlier chapters to solve a problem. Please invest your time 
working through these problems because we think they will further enhance your 
problem-solving skills and give you an increased appreciation of how chemistry is 
used in the world.

SAMPLE EXERCISE 5.2    Identifying Exothermic and  
Endothermic Processes 

LO2

identify the steps in the process as either endothermic or exothermic, and give the sign of 
q

Collect and Organize   We are given that the water is the system. We must evaluate 
how the water gains or loses energy during distillation.

Analyze   

through the condenser.

impure water
vaporization pure

water vapor
condensation

pure water

Solve   
 

q
system (water vapor) into the surroundings (condenser walls), process 3 is exothermic. 

q is negative.

Think About It   Endothermic means that energy is transferred from the surroundings 
into the system— 

process is exothermic.

d Practice Exercise    What is the sign of q as (a) a match burns, (b) drops of 
molten candle wax solidify, and (c) perspiration evaporates from skin? In each 

(Answers to Practice Exercises are in the back of the book.)
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If you use the book mostly as a reference and problem-solving guide, we have 
a learning path for you as well. It starts with the Summary and a Problem-
Solving Summary at the end of each chapter. The first is a brief synopsis of the 
chapter, organized by Learning Outcomes. Key figures have been added to this 
Summary to provide visual cues as you review. The Problem-Solving Summary 
organizes the chapter by problem type and summarizes relevant concepts and 
equations you need to solve each type of problem. The Problem-Solving Summary 
also points you back to the relevant Sample Exercises that model how to solve 
each problem and cross-references the Learning Outcomes at the beginning of 
the chapter.

Type of Problem Concepts and Equations Sample Exercises

Calculating kinetic and potential 
energy

  (5.2)

  (5.3)

5.1

Identifying endothermic and  
exothermic processes, and  
calculating internal energy 
change (DE) and P–V work

For the system:

 DE 5 q 1 w (5.5)

where w 5 2PDV.

5.2, 5.3, 5.4

Predicting the sign of DHsys for 
physical and chemical changes

Exothermic: DHsys , 0
Endothermic: DHsys . 0

5.5, 5.6

Following the summaries are groups of questions and problems. The first 
group is the Visual Problems. Concept Review Questions and Problems come 
next, arranged by topic in the same order as they appear in the chapter. Concept 
Reviews are qualitative and often ask you to explain why or how something hap-
pens. Problems are paired and can be quantitative, conceptual, or a combination 
of both. Contextual problems have a title that describes the context in which the 
problem is placed. Additional Problems can come from any section or combina-
tion of sections in the chapter. Some of them incorporate concepts from previous 
chapters. Problems marked with an asterisk (*) are more challenging and often 
require multiple steps to solve.

We want you to have confidence in using the answers in the back of the book 
as well as the Student’s Solutions Manual, so we continue to use a rigorous triple-
check accuracy program for the fifth edition. Each end-of-chapter question and 
problem has been solved independently by at least three PhD chemists. For the 
fifth edition the team included Solutions Manual author Bradley Wile and two 
additional chemistry educators. Brad compared his solutions to those from the 
two reviewers and resolved any discrepancies. This process is designed to ensure 
clearly written problems and accurate answers in the appendices and Solutions 
Manual.

No matter how you use this book, we hope it becomes a valuable tool for you 
and helps you not only understand the principles of chemistry but also apply them 
to solving global problems, such as diagnosing and treating disease or making 
more efficient use of Earth’s natural resources.

Changes to the Fifth Edition
Dear Instructor,
As authors of a textbook we are very often asked: “Why is a fifth edition neces-
sary? Has the science changed that much since the fourth edition?” Although 
chemistry is a vigorous and dynamic field, most basic concepts presented in an 

 
LO5  A calorimeter, characterized by its calo-
rimeter constant (its characteristic heat capac-
ity), is a device used to measure the amount of 
energy involved in physical and chemical pro-

enthalpy of reaction 
(DHrxn). (Section 5.6)

LO6    Hess’s law states that the enthalpy of a reaction (DHrxn) that is 
the sum of two or more other reactions is equal to the sum of the DHrxn 
values of the constituent reactions. It can be used to calculate enthalpy 
changes in reactions that are hard or impossible to measure directly. 
(Section 5.7)

CO(g) + 3 H2(g)
products

Progress of reaction

En
th

alp
y

CH4(g) + H2O(g)
reactants

∆H°rxn = +206.1 kJ
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introductory course have not changed dramatically. However, two areas tightly 
intertwined in this text— pedagogy and context— have changed significantly, and 
those areas are the drivers of this new edition. Here are some of the most note-
worthy changes we made throughout this edition:

• We welcome Stacey Lowery Bretz as our new coauthor. Stacey is a 
chemistry education researcher, and her insights and expertise about 
student misconceptions and the best way to address those misconceptions 
can be seen throughout the book. The most obvious examples are the new 
Particulate Review and Particulate Preview questions at the beginning 
of each chapter. The Review is a diagnostic tool that addresses important 
prior knowledge students must draw upon to successfully interpret 
molecular (particulate) images in the chapter. The Review consists of a 
few questions based on particulate-scale art. The Preview consists of a 
short series of questions about a particulate image that ask students to 
extend their prior knowledge and speculate about material in the chapter. 
The goal of the Preview is to direct students as they read, making reading 
more interactive.

• In addition to the Particulate Review and Preview, Stacey authored a new 
type of visual problem: the visual problem matrix. The matrix consists 
of macroscopic and particulate images in a grid, followed by a series of 
questions that ask students to identify commonalities and differences across 
the images based on their understanding. Versions of the Particulate Review, 
Preview, and the visual matrix problems are in the lecture PowerPoint 
presentations to use with clickers during lectures. They are also available in 
Smartwork5 as individual problems as well as premade assignments to use 
before or after class.

• We evaluated each Sample Exercise, and in simple, one-step Sample 
Exercises, we have streamlined the prose by combining the Collect and 
Organize and Analyze step. We revised numerous Sample Exercises 
throughout the fifth edition on the basis of reviewer and user feedback.

• The treatment of how to evaluate the precision and accuracy of experimental 
values in Chapter 1 has been expanded to include the identification of outliers 
by using standard deviations, confidence intervals, and the Grubbs test.

• We have expanded our coverage of aqueous equilibrium by adding a second 
chapter that doubles the number of Sample Exercises and includes Concept 
Tests that focus upon the molecules and ions present in titrations and 
buffers.

• In the fifth edition, functional groups are introduced in Chapter 2 and 
then seamlessly integrated into chapters as appropriate. For example, 
carboxylic acids and amines are introduced in Chapter 4 when students 
learn about acid–base reactions. This pedagogical choice enables us to 
weave core chemistry concepts into contexts that include a wider variety 
of environmental and health issues. Our hope is that it provides a stronger 
foundation for considering Lewis structures with a broader knowledge of the 
variety of molecules that are possible, as well as emphasizes the importance 
of structure–function from the very beginning of students’ journey through 
chemistry.

• Given the integration of functional groups into the first 12 chapters, we 
now have one chapter (Chapter 20) that focuses on organic chemistry and 
biochemistry by discussing isomers, chirality, and the major classes of large 
biomolecules.

A B C

D E F

G H I

Attraction of two 
charged particles Sublimation of dry ice Helium atoms 

Methane Propane Melting ice cream

Formation of dew
Hardening of hot

paraffin wax
Breaking the bond in
an oxygen molecule

Na+ + Cl– → NaCl

 5.8. Use representations [A] through [I] in Figure P5.8 to 
answer questions a–f.
 a. Which processes are exothermic?
 b. Which processes have a positive DH?
 c. In which processes does the system gain energy?
 d. In which processes do the surroundings lose energy?
 e. 

of propane [E] at 1000°C in terms of (i) average kinetic 
energy and (ii) average speed of the molecules.

 f. Which substance(s) would not have vibrational motion or 
rotational motion? Why?
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• Chapter 12, the Solids chapter, has been expanded to include polymers 
with a focus on biomedical applications, and band theory has been moved 
from the Solids chapter to the end of Chapter 9 following the discussion of 
molecular orbital theory.

• We took the advice of reviewers and now have two descriptive chemistry 
chapters at the end of the book. These chapters focus on main group 
chemistry and transition metals, both within the context of biological and 
medical applications.

• We have revised or replaced at least 10 percent of the end-of-chapter 
problems. We incorporated feedback from users and reviewers to address 
areas where we needed more problems or additional problems of varying 
difficulty.

• A new version of Smartwork, Smartwork5, offers more than 3600 problems 
in a sophisticated and user-friendly platform, and 400 new problems are 
designed to support the new visualization pedagogy. In addition to being 
tablet compatible, Smartwork5 integrates with the most common campus 
learning management systems.

• The nearly 100 ChemTours have been updated to better support lecture, 
lab, and independent student learning. The ChemTours include images, 
animations, and audio that demonstrate dynamic processes and help 
students visualize and understand chemistry at the molecular level. Forty 
of the ChemTours now contain greater interactivity and are assignable in 
Smartwork5. The ChemTours are linked directly from the ebook and are 
now in HTML5, which means they are tablet compatible.

Teaching and Learning Resources

Smartwork5 Online Homework  
for General Chemistry
digital.wwnorton.com/chem5
Smartwork5 is the most intuitive online tutorial and homework management 
system available for general chemistry. The many question types, including graded 
molecule drawing, math and chemical equations, ranking tasks, and interactive 
figures, help students develop and apply their understanding of fundamental con-
cepts in chemistry.

Every problem in Smartwork5 includes response-specific feedback and gen-
eral hints using the steps in COAST. Links to the ebook version of Chemistry: The 
Science in Context, Fifth Edition, take students to the specific place in the text 
where the concept is explained. All problems in Smartwork5 use the same lan-
guage and notation as the textbook.

Smartwork5 also features Tutorial Problems. If students ask for help in a 
Tutorial Problem, the system breaks the problem down into smaller steps, coach-
ing them with hints, answer-specific feedback, and probing questions within each 
step. At any point in a Tutorial, a student can return to and answer the original 
problem.

Assigning, editing, and administering homework within Smartwork5 is easy. 
It’s tablet compatible and integrates with the most common campus learning 
management systems. Smartwork5 allows the instructor to search for problems 

https://digital.wwnorton.com/chem5
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by using both the text’s Learning Objectives and Bloom’s taxonomy. Instructors 
can use premade assignment sets provided by Norton authors, modify those 
assignments, or create their own. Instructors can also make changes in the 
problems at the question level. All instructors have access to our WYSIWYG 
(What You See Is What You Get) authoring tools— the same ones Norton authors 
use. Those intuitive tools make it easy to modify existing problems or to develop 
new content that meets the specific needs of your course.

Wherever possible, Smartwork5 makes use of algorithmic variables so that 
students see slightly different versions of the same problem. Assignments are 
graded automatically, and Smartwork5 includes sophisticated yet flexible tools for 
managing class data. Instructors can use the class activity report to assess stu-
dents’ performance on specific problems within an assignment. Instructors can 
also review individual students’ work on problems.

Smartwork5 for Chemistry, Fifth Edition, features the following problem 
types:

• End-of-Chapter Problems. These problems, which use algorithmic variables 
when appropriate, all have hints and answer-specific feedback to coach 
students through mastering single- and multiple-concept problems based on 
chapter content. They make use of all of Smartwork5’s answer-entry tools.

• ChemTour Problems. Forty ChemTours now contain greater interactivity 
and are assignable in Smartwork5.

• Visual and Graphing Problems. These problems challenge students 
to identify chemical phenomena and to interpret graphs. They use 
Smartwork5’s Drag-and-Drop and Hotspot functionality.

• Reaction Visualization Problems. Based on both static art and videos of 
simulated reactions, these problems are designed to help students visualize 
what happens at the atomic level— and why it happens.

• Ranking Task Problems. These problems ask students to make comparative 
judgments between items in a set.

• Nomenclature Problems. New matching and multiple-choice problems help 
students master course vocabulary.

• Multistep Tutorials. These problems offer students who demonstrate a need 
for help a series of linked, step-by-step subproblems to work. They are based 
on the Concept Review problems at the end of each chapter.

• Math Review Problems. These problems can be used by students for practice 
or by instructors to diagnose the mathematical ability of their students.

Ebook
digital.wwnorton.com/chem5
An affordable and convenient alternative to the print text, Norton Ebooks let 
students access the entire book and much more: they can search, highlight, and 
take notes with ease. The Norton Ebook allows instructors to share their notes 
with students. And the ebook can be viewed on most devices— laptop, tablet, 
even a public computer— and will stay synced between devices.

The online version of Chemistry, Fifth Edition, also provides students with 
one-click access to the nearly 100 ChemTour animations.

The online ebook is available bundled with the print text and Smartwork5 at 
no extra cost, or it may be purchased bundled with Smartwork5 access.

Norton also offers a downloadable PDF version of the ebook.

https://digital.wwnorton.com/chem5
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Student’s Solutions Manual
by Bradley Wile, Ohio Northern University

The Student’s Solutions Manual provides students with fully worked solutions to 
select end-of-chapter problems using the COAST four-step method (Collect and 
Organize, Analyze, Solve, and Think About It). The Student’s Solutions Manual 
contains several pieces of art for each chapter, designed to help students visualize 
ways to approach problems. This artwork is also used in the hints and feedback 
within Smartwork5.

Clickers in Action: Increasing Student 
Participation in General Chemistry
by Margaret Asirvatham, University of Colorado, Boulder

An instructor-oriented resource providing information on implementing clickers 
in general chemistry courses, Clickers in Action contains more than 250 class-
tested, lecture-ready questions, with histograms showing student responses, as 
well as insights and suggestions for implementation. Question types include mac-
roscopic observation, symbolic representation, and atomic/molecular views of 
processes.

Test Bank
by Chris Bradley, Mount St. Mary’s University

Norton uses an innovative, evidence-based model to deliver high-quality and 
pedagogically effective quizzes and testing materials. Each chapter of the  
Test Bank is structured around an expanded list of student learning objectives 
and evaluates student knowledge on six distinct levels based on Bloom’s Tax-
onomy: Remembering, Understanding, Applying, Analyzing, Evaluating, and 
Creating.

Questions are further classified by section and difficulty, making it easy to 
construct tests and quizzes that are meaningful and diagnostic, according to each 
instructor’s needs. More than 2500 questions are divided into multiple choice and 
short answer.

The Test Bank is available with ExamView Test Generator software, allowing 
instructors to effortlessly create, administer, and manage assessments. The conve-
nient and intuitive test-making wizard makes it easy to create customized exams 
with no software learning curve. Other key features include the ability to create 
paper exams with algorithmically generated variables and export files directly to 
Blackboard, Canvas, Desire2Learn, and Moodle.

Instructor’s Solutions Manual
by Bradley Wile, Ohio Northern University

The Instructor’s Solutions Manual provides instructors with fully worked solu-
tions to every end-of-chapter Concept Review and Problem. Each solution uses 
the COAST four-step method (Collect and Organize, Analyze, Solve, and 
Think About It).
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Instructor’s Resource Manual
by Matthew Van Duzor, North Park University, and Andrea Van Duzor, 
Chicago State University

This complete resource manual for instructors has been revised to correspond to 
changes made in the fifth edition. Each chapter begins with a brief overview of 
the text chapter followed by suggestions for integrating the contexts featured in 
the book into a lecture, summaries of the textbook’s Particulate Preview and 
Review sections, suggested sample lecture outlines, alternative contexts to use 
with each chapter, and instructor notes for suggested activities from the Chem-
Connections and Calculations in Chemistry, Second Edition, workbooks. Suggested 
ChemTours and laboratory exercises round out each chapter.

Instructor’s Resource Disc
This helpful classroom presentation tool features:

• Stepwise animations and classroom response questions. Developed by Jeffrey 
Macedone of Brigham Young University and his team, these animations, 
which use native PowerPoint functionality and textbook art, help instructors 
to “walk” students through nearly 100 chemical concepts and processes. 
Where appropriate, the slides contain two types of questions for students 
to answer in class: questions that ask them to predict what will happen 
next and why, and questions that ask them to apply knowledge gained from 
watching the animation. Self-contained notes help instructors adapt these 
materials to their own classrooms.

• Lecture PowerPoint (Scott Farrell, Ocean County College) slides include 
a suggested classroom-lecture script in an accompanying Word file. Each 
chapter opens with a set of multiple-choice questions based on the textbook’s 
Particulate Review and Preview section, and concludes with another set of 
questions based on the textbook’s visual problem matrix.

• All ChemTours.
• Clickers in Action clicker questions for each chapter provide instructors with 

class-tested questions they can integrate into their course.
• Photographs, drawn figures, and tables from the text, available in 

PowerPoint and JPEG format.

Downloadable Instructor’s Resources
digital.wwnorton.com/chem5
This password-protected site for instructors includes:

• Stepwise animations and classroom response questions. Developed by Jeffrey 
Macedone of Brigham Young University and his team, these animations, 
which use native PowerPoint functionality and textbook art, help instructors 
to “walk” students through nearly 100 chemical concepts and processes. 
Where appropriate, the slides contain two types of questions for students 
to answer in class: questions that ask them to predict what will happen 
next and why, and questions that ask them to apply knowledge gained from 
watching the animation. Self-contained notes help instructors adapt these 
materials to their own classrooms.

https://digital.wwnorton.com/chem5
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• Lecture PowerPoints.
• All ChemTours.
• Test bank in PDF, Word RTF, and ExamView Assessment Suite formats.
• Solutions Manual in PDF and Word, so that instructors may edit solutions.
• All of the end-of-chapter questions and problems, available in Word along 

with the key equations.
• Photographs, drawn figures, and tables from the text, available in 

PowerPoint and JPEG format.
• Clickers in Action clicker questions.
• Course cartridges. Available for the most common learning management 

systems, course cartridges include access to the ChemTours and StepWise 
animations as well as links to the ebook and Smartwork5.
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Particles of Matter
Measurement and the 
Tools of Science

1

Atoms and Molecules: What’s the Difference?

In Chapter 1 we explore how chemists classify different kinds of matter, from  
elements to compounds to mixtures. Hydrogen and helium were the first two  
elements formed after the universe began. Chemists use distinctively colored  
spheres to distinguish atoms of different elements in their drawings and  
models. For example, hydrogen is almost always depicted as white.

● How many of the following particles are shown in this image?
● Hydrogen atoms?
● Hydrogen molecules?
● Helium atoms?

● Are molecules composed of atoms, or are atoms composed of molecules?
(Answers to Particulate Review questions are in the back of the book.)

Ancient Universe The colors 
of the more than 10,000 galaxies in 
this image give us a glimpse into the 
universe as it existed about 13 billion 
years ago. This image was taken by 
NASA’s Hubble Space Telescope.

Particul ate review



3

Matter and Energy

The temperature in outer space is 2.73 K. The temperature of dry ice (carbon dioxide, 
CO2) is 70 times warmer, but still cold enough to keep ice cream frozen on a hot 
summer day. As you read Chapter 1, look for ideas that will help you answer these 
questions:

● Particulate images of CO2 as it sublimes are shown here.  
Which two phases of matter are involved in sublimation?

● What features of the images helped you decide which  
two phases were involved?

● What is the role of energy in this transformation of  
matter? Must energy be added or is energy produced?

Particul ate preview



4  chapter 1  Particles of Matter

1.1 How and Why
For thousands of years, humans have sought to better understand the world 
around us. For most of that time we resorted to mythological explanations of 
natural phenomena. Many once believed, for example, that the Sun rose in the 
east and set in the west because it was carried across the sky by a god driving a 
chariot propelled by winged horses.

In recent times we have been able to move beyond such fanciful accounts of 
natural phenomena to explanations based on observation and scientific reason-
ing. Unfortunately, this movement toward rational explanations has not always 
been smooth. Consider, for example, the contributions of a man whom Albert 
Einstein called the father of modern science, Galileo Galilei. At the dawn of 
the 17th century, Galileo used advanced telescopes of his own design to observe 
the movement of the planets and their moons. He concluded that they, like 
Earth, revolved around the Sun. However, this view conflicted with a belief 
held by many religious leaders of his time that Earth was the center of the 
universe. In 1633 a religious tribunal forced Galileo to disavow his conclusion 
that Earth orbited the Sun and banned him (or anyone) from publishing the 
results of studies that called into question the Earth-centered view of the uni-
verse. The ban was not completely lifted until 1835— nearly 200 years after 
Galileo’s death.

In the last century, advances in the design and performance of telescopes have 
led to the astounding discovery that we live in an expanding universe that probably 
began 13.8 billion years ago with an enormous release of energy. In this chapter 
and in later ones, we examine some of the data that led to the theory of the Big 
Bang and that also explain the formation of the elements that make up the uni-
verse, our planet, and ourselves.

Scientific investigations into the origin of the universe have stretched the 
human imagination and forced scientists to develop new models and new expla-
nations of how and why things are the way they are. Frequently these efforts have 
involved observing and measuring large-scale phenomena, which we refer to as 
macroscopic phenomena. We seek to explain these macroscopic phenomena 
through particulate representations that show the structure of matter on the scale 
of atomic and even subatomic particles. In this chapter and those that follow, you 

LO1  Distinguish among pure 
substances, homogeneous mixtures, and 
heterogeneous mixtures, and between 
elements and compounds

LO2  Connect chemical formulas to 
molecular structures and vice versa

LO3  Distinguish between physical 
processes and chemical reactions, and 
between physical and chemical properties 
Sample Exercise 1.1

LO4  Use a systematic approach (COAST) 
to problem solving

LO5  Describe the three states of matter 
and the transitions between them at the 
macroscopic and particulate levels 
Sample Exercise 1.2

LO6  Describe the scientific method

LO7  Convert quantities from one system 
of units to another 
Sample Exercises 1.3, 1.4, 1.9

LO8  Express uncertain values with the 
appropriate number of significant figures 
Sample Exercise 1.5

LO9  Distinguish between exact and 
uncertain values, evaluate the precision 
and accuracy of experimental results, and 
identify outliers 
Sample Exercises 1.6, 1.7, 1.8

Learning Outcomes
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mass the property that defines the 
quantity of matter in an object.

matter anything that has mass and 
occupies space.

chemistry the study of the composition, 
structure, and properties of matter, and 
of the energy consumed or given off 
when matter undergoes a change.

substance matter that has a constant 
composition and cannot be broken 
down to simpler matter by any physical 
process; also called pure substance.

physical process a transformation of a 
sample of matter, such as a change in 
its physical state, that does not alter the 
chemical identity of any substance in the 
sample.

will encounter many of these macroscopic–particulate connections. The authors 
of this book hope that your exploration of these connections will help you better 
understand how and why nature is the way it is.

1.2 Macroscopic and Particulate 
Views of Matter

According to a formula widely used in medicine, the ideal weight for a six-foot 
male is 170 pounds (or 77 kilograms). On average, about 30 of these pounds are 
fat, with the remaining 140 pounds— including bones, organs, muscle, and 
blood— classified as lean body mass. These values are measures of the total mass 
of all the matter in the body. In general, mass is the quantity of matter in any 
object. Matter, in turn, is a term that applies to everything in the body (and in the 
universe) that has mass and occupies space. Chemistry is the study of the compo-
sition, structure, and properties of matter.

Classes of Matter
The different forms of matter are organized according to the classification scheme 
shown in Figure 1.1. We begin on the left with pure substances, which have a 
constant composition that does not vary from one sample to another. For example, 
the composition of pure water does not vary, no matter what its source or how 
much of it there is. Like all pure substances, water cannot be separated into 
simpler substances by any physical process. A physical process is a transformation 
of a sample of matter that does not alter the chemical identities of any of the sub-
stances in the sample, such as a change in physical state from solid to liquid.

Can it be
separated by a

physical process?

Can it be
decomposed by a

chemical reaction?

Is it
uniform

throughout?

YesNo

No Yes Yes No

Element Compound Homogeneous Heterogeneous

Ice (water)Pure gold Vinegar Salad dressing

Pure
substance Mixture

All matter

FIGURE 1.1  The two principal classes of 
matter are pure substances and mixtures. 
A pure substance may be a compound 
(such as water) or an element (such as 
gold). A mixture is homogeneous when 
the substances are distributed uniformly, 
as they are in vinegar (a mixture of mostly 
acetic acid and water). A mixture is 
heterogeneous when the substances are not 
distributed uniformly— as when solids are 
suspended in a liquid but may settle to the 
bottom of the container, as they do in some 
salad dressings.
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Pure substances are subdivided into two groups: elements and compounds 
(Figure 1.2). An element is a pure substance that cannot be broken down into 
simpler substances. The periodic table inside the front cover shows all the known 
elements. Only a few of them (including gold, silver, nitrogen, oxygen, and sulfur) 
occur in nature uncombined with other elements. Instead, most elements in nature 
are found mixed with other elements in the form of compounds, substances whose 
elements can be separated from one another only by a chemical reaction: the trans-
formation of one or more substances into one or more different substances. Com-
pounds typically have properties that are very different from those of the elements 
of which they are composed. For example, common table salt (sodium chloride) has 
little in common with either sodium, which is a silver-gray metal that reacts vio-
lently when dropped in water, or chlorine, which is a toxic yellow-green gas.

concePt test

Which photo in Figure 1.3 depicts a physical process? Which photo depicts a chemical 
reaction? Match each photo to its corresponding particulate representation, using 
what you know about the difference between a physical process and a chemical 
reaction.

(d)

(c)(a)

(b)

FIGURE 1.3  Macroscopic and particulate representations of both a physical process and a 
chemical reaction.

(Answers to Concept Tests are in the back of the book.)

Any matter that is not a pure substance is considered a mixture, which is 
composed of two or more substances that retain their own chemical identities. 
The substances in mixtures can be separated by physical processes, and they are 
not present in definite proportions. For example, the composition of circulating 
blood in a human body is constantly changing as it delivers substances involved in 

(a) Atoms of helium, an
  element

(b) Molecules of carbon
     dioxide, a compound

(c) Mixture of gases

FIGURE 1.2  All matter is made up of either 
pure substances (of which there are relatively 
few in nature) or mixtures. (a) The element 
helium (He), the second most abundant  
element in the universe, is one example  
of a pure substance. (b) The compound 
carbon dioxide (CO2), the gas used in many 
fire extinguishers, is also a pure substance. 
(c) This homogeneous mixture contains three 
substances: nitrogen (N2, blue), hydrogen 
(H2, white), and oxygen (O2, red).

element a pure substance that cannot 
be separated into simpler substances.

compound a pure substance that is 
composed of two or more elements 
bonded together in fixed proportions 
and that can be broken down into those 
elements by a chemical reaction.

chemical reaction the transformation 
of one or more substances into different 
substances.

mixture a combination of pure 
substances in variable proportions 
in which the individual substances 
retain their chemical identities and can 
be separated from one another by a 
physical process.
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energy production and cell growth to the cells and carries away the waste prod-
ucts of life’s biochemical processes. Thus blood contains more oxygen and less 
carbon dioxide when it leaves our lungs than it does when it enters them.

In a homogeneous mixture, the substances making up the mixture are uni-
formly distributed. This means that the first sip you take from a bottle of water 
has the same composition as the last. (Keep in mind that bottled water contains 
small quantities of dissolved substances that either occur naturally in the water or 
are added prior to bottling to give it a desirable taste. Bottled drinking water is 
not pure water.) Homogeneous mixtures are also called solutions, a term that 
chemists apply to homogeneous mixtures of gases and solids as well as liquids. For 
example, a sample of filtered air is a solution of nitrogen, oxygen, argon, carbon 
dioxide, and other atmospheric gases. A “gold” ring is actually a solid solution of 
mostly gold plus other metals such as silver, copper, and zinc.

On the other hand, the substances in a heterogeneous mixture are not distrib-
uted uniformly. One way to tell that a liquid mixture is heterogeneous is to look for 
a boundary between the liquids in it (such as the oil and water layers in the bottle 
of salad dressing in Figure 1.1). Such a boundary indicates that the substances do 
not dissolve in one another. Another sign that a liquid may be a heterogeneous 
mixture is that it is not clear (transparent). Light cannot pass through such liquids 
because it is scattered by tiny solid particles or liquid drops that are suspended, but 
not dissolved, in the surrounding liquid. Human blood, for example, is opaque 
because the blood cells that are suspended in it absorb and scatter light.

A Particulate View
Given that compounds are formed from elements, the question must be asked: Do 
elements consist of yet smaller particles? The answer is yes. An element consists of 
just one type of particle, known as an atom. For example, elements such as gold 
and helium consist of individual atoms, yet the gold atoms are different from the 
helium atoms, as we see in Chapter 2. Atoms cannot be chemically or mechani-
cally divided into smaller particles. Although civilizations as old as the ancient 
Greeks believed in atoms, people then had no evidence that atoms actually existed. 
Today, however, we have compelling evidence in the form of images of atoms, 
such as a surface of platinum (Figure 1.4) that has been magnified over 100 mil-
lion times by using a device called a scanning tunneling microscope.

Some elements exist as molecules. A molecule is an assembly of two or more 
atoms that are held together in a characteristic pattern by forces called chemical 
bonds. For example, the air we breathe consists mostly of diatomic (two-atom) 

(b)(a)

FIGURE 1.4  (a) Platinum resists oxidation 
and is therefore used to make expensive 
items such as wedding rings and pacemakers. 
(b) Since the 1980s, scientists have been 
able to image individual atoms by using 
an instrument called a scanning tunneling 
microscope (STM). In this STM image, 
the fuzzy hexagons (colored blue to be easier 
to see) are individual platinum atoms. The 
radius of each atom is 138 picometers (pm), 
or 138 trillionths of a meter.

homogeneous mixture a mixture in 
which the components are distributed 
uniformly throughout and have no visible 
boundaries or regions.

solution another name for a 
homogeneous mixture. Solutions are 
often liquids, but they may also be solids 
or gases.

heterogeneous mixture a mixture 
in which the components are not 
distributed uniformly, so that the mixture 
contains distinct regions of different 
compositions.

atom the smallest particle of an element 
that cannot be chemically or mechanically 
divided into smaller particles.

molecule a collection of atoms 
chemically bonded together in 
characteristic proportions.

chemical bond a force that holds two 
atoms or ions in a compound together.



8  chapter 1  Particles of Matter

molecules of nitrogen gas, N2, and oxygen gas, O2. The subscripts in the chemical 
formulas of these two gases tell us that their molecules are each composed of two 
atoms. Other elements also exist as diatomic molecules, including H2 and ele-
ments in column 17 of the periodic table: F2, Cl2, Br2, and I2.

Most of the molecules in the universe, however, contain atoms of more than one 
element, meaning that they are compounds. The chemical formula of a molecular 
compound tells us the number of atoms of each element in one of its molecules. For 
example, the formula H2O tells us that pure water is composed of molecules that 
each contain two hydrogen atoms and one oxygen atom, as shown in Figure 1.5.

The 2:1 ratio of hydrogen to oxygen atoms in molecules of H2O also reflects 
the proportions of H2 gas and O2 gas that react to form water. These gases always 
react with each other in the same proportion: two molecules of H2 for every one 
molecule of O2. This relationship is illustrated in Figure 1.5 with models of the 
molecules involved and the chemical equation beneath them. In a chemical equa-
tion, chemical formulas represent the substances involved in a chemical reaction. 
The arrow in the middle of a chemical equation separates the reactant(s) from the 
product(s). In Figure 1.5, the phase symbol (g) shows that the reactants are gases 
and (/) shows that H2O is a liquid. Solids are denoted by (s).

Note that the reaction between hydrogen and oxygen also produces energy, 
most generally defined as the capacity to do work. If we reverse the process and 
add enough energy to decompose water into hydrogen and oxygen (Figure 1.6), 
which is another example of a chemical reaction, we will always obtain two mol-
ecules of hydrogen gas for every one molecule of oxygen gas. This consistency 
illustrates the law of constant composition: every sample of a particular com-
pound always contains the same elements combined in the same proportions.

concePt test

A compound with the formula NO is present in the exhaust gases leaving a car’s 
engine. As NO travels through the car’s exhaust system, some of it decomposes into 
nitrogen gas and oxygen gas. What is the ratio of nitrogen molecules to oxygen mole-
cules formed from the decomposition of NO?

(Answers to Concept Tests are in the back of the book.)

Chemical formulas provide information about the ratios of the elements in 
molecular compounds, but formulas do not tell us how the atoms of each element 
are bonded to one another within each molecule, nor do they tell us anything about 

chemical formula notation for 
representing elements and compounds; 
consists of the symbols of the 
constituent elements and subscripts 
identifying the number of atoms of each 
element present.

chemical equation notation in which 
chemical formulas express the identities 
and their coefficients express the 
quantities of substances involved in  
a chemical reaction.

energy the capacity to do work.

law of constant composition the 
principle that all samples of a particular 
compound contain the same elements 
combined in the same proportions.

ion a particle consisting of one or more 
atoms that has a net positive or negative 
electrical charge.

cation an ion with a positive charge.

anion an ion with a negative charge.

Hydrogen

Hydrogen

Water

Energy

Water

2 H2         +   O2                                   2 H2O         +   Energy

Reactants Products

Oxygen

(g ) (g ) (ℓ)

FIGURE 1.5  The reaction between 
hydrogen and oxygen is depicted with 
molecular models (white and red spheres) 
and in the form of a chemical equation. 
Note that energy is also a product of the 
reaction.
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the shapes of molecules. To communicate information about bonding and shape, we 
need to draw a structural formula such as the one for ethanol (C2H5OH) in 
Figure 1.7(a), which uses straight lines to represent the chemical bonds that connect 
the carbon (C), hydrogen (H), and oxygen (O) atoms within the molecule.

However, a structural formula does not necessarily show how atoms are 
arranged in three-dimensional space. Molecular models provide this 3-D perspec-
tive. Ball-and-stick molecular models (Figure 1.7b) use spheres to represent atoms 
and sticks to represent chemical bonds. The advantage of ball-and-stick models is 
that they show the correct angles between the bonds. However, there are limita-
tions to using models to represent molecules. For example, the sizes of the spheres 
are not proportional to the sizes of the atoms they represent, and the atoms are 
spaced far enough apart to accommodate the stick bonds. (In real molecules, the 
atoms touch each other.) Both of these limitations are overcome with space-filling 
molecular models (Figure 1.7c), in which the spheres are drawn to scale and touch 
one another as atoms do in real molecules. One limitation of space-filling models 
is that the bond angles between atoms may be difficult to discern. An additional 
limitation of both the ball-and-stick and space-filling models is that atoms them-
selves do not have color. Representing oxygen atoms as red spheres and hydrogen 
atoms as white spheres is merely a convention used by chemists.

Not all compounds are molecular. Instead, some compounds consist of posi-
tively and negatively charged particles called ions that are electrostatically 
attracted to one another. For example, calcium chloride (which is used to melt 
snow and ice on sidewalks in winter) consists of calcium ions (Ca21) and chloride 
ions (Cl2). The positive ions are called cations, and the negative ions are called 
anions. Ions may consist of single atoms like Ca21 and Cl2, or they may contain 
two or more atoms bonded together that have an overall positive or negative 
charge, like the hydroxide ion (OH2).

1.3 Mixtures and How to  
Separate Them

As noted in Section 1.2, mixtures can be separated into their component sub-
stances by physical processes. Consider, for example, how the components of 
human blood can be separated. Blood is a heterogeneous mixture of hundreds of 

− +

−

−

+

+

FIGURE 1.6  An electric current passed 
through water provides enough energy 
to decompose water into oxygen gas 
and hydrogen gas. The ratio of the gases 
produced is always two molecules of 
hydrogen for every one molecule of oxygen. 
These fixed proportions illustrate the law of 
constant composition.

Structural formula(a)

Ball-and-stick model(b)

Space-�lling model

Ethanol

(c)

C CH

H

H

O H

H

H

FIGURE 1.7  Three ways to represent the 
arrangement of atoms in a molecule of 
ethanol: (a) structural formula; (b) ball-
and-stick model, where white spheres 
represent hydrogen atoms, black spheres 
represent carbon atoms, and red spheres 
represent oxygen atoms; (c) space-filling 
model.




